Projective Resolutions of Cohen-Macaulay Algebras
نویسنده
چکیده
The problem of explicitly finding a free resolution, minimal in some suitable sense, of a module over a polynomial ring is solved in principle by the algorithm of Hilbert [H]. However, this algorithm is of enormous computational difficulty. If the module happens to be finite dimensional over the ground field, and if the module structure is given by specifying the commuting linear transformations induced by the indeterminates, then a little-known result of Scheja and Storch, resumed in Sect. 1, allows one to write down an explicit free resolution of the right length without computation. The same idea can be used for many CohenMacaulay modules (Example 1.1). But although the Scheja-Storch resolution is minimal in some cases, it is not minimal in the main case of interest where the module is a factor-ring of the polynomial ring and not the ground field itself.
منابع مشابه
RESULTS ON ALMOST COHEN-MACAULAY MODULES
Let $(R,underline{m})$ be a commutative Noetherian local ring and $M$ be a non-zero finitely generated $R$-module. We show that if $R$ is almost Cohen-Macaulay and $M$ is perfect with finite projective dimension, then $M$ is an almost Cohen-Macaulay module. Also, we give some necessary and sufficient condition on $M$ to be an almost Cohen-Macaulay module, by using $Ext$ functors.
متن کاملHigher Auslander-Reiten theory on maximal orthogonal subcategories
We introduce the concept of maximal orthogonal subcategories over artin algebras and orders, and develop higher Auslander-Reiten theory on them. Auslander-Reiten theory, especially the concept of almost split sequences and their existence theorem, is fundamental to study categories which appear in representation theory, for example, modules over artin algebras [ARS][GR][Ri], their functorially ...
متن کاملHigher dimensional Auslander-Reiten theory on maximal orthogonal subcategories
We introduce the concept of maximal orthogonal subcategories over artin algebras and orders, and develop higher Auslander-Reiten theory on them. Auslander-Reiten theory, especially the concept of almost split sequences and their existence theorem, is fundamental to study categories which appear in representation theory, for example, modules over artin algebras [ARS][GR][Ri], their functorially ...
متن کاملCOHEN-MACAULAY HOMOLOGICAL DIMENSIONS WITH RESPECT TO AMALGAMATED DUPLICATION
In this paper we use "ring changed'' Gorenstein homologicaldimensions to define Cohen-Macaulay injective, projective and flatdimensions. For doing this we use the amalgamated duplication of thebase ring with semi-dualizing ideals. Among other results, we prove that finiteness of these new dimensions characterizes Cohen-Macaulay rings with dualizing ideals.
متن کامل. A C ] 1 0 A pr 2 00 9 KOSZUL INCIDENCE ALGEBRAS , AFFINE SEMIGROUPS , AND STANLEY - REISNER IDEALS
We prove a theorem unifying three results from combinatorial homological and commutative algebra, characterizing the Koszul property for incidence algebras of posets and affine semigroup rings, and characterizing linear resolutions of squarefree monomial ideals. The characterization in the graded setting is via the Cohen-Macaulay property of certain posets or simplicial complexes, and in the mo...
متن کاملGraded Betti Numbers of Cohen-macaulay Modules and the Multiplicity Conjecture
We give conjectures on the possible graded Betti numbers of Cohen-Macaulay modules up to multiplication by positive rational numbers. The idea is that the Betti diagrams should be non-negative linear combinations of pure diagrams. The conjectures are verified in the cases where the structure of resolutions are known, i.e., for modules of codimension two, for Gorenstein algebras of codimension t...
متن کامل